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1 HOLOGRAPHIC IMAGE PROPAGATION

As depicted in Fig. 1, when such holograms are illuminated with a
collimated coherent light (e.g. laser), these holograms can recon-
struct an intended optical field at target depth levels. How light
travels from a hologram to a parallel image plane is commonly de-
scribed using Rayleigh-Sommerfeld diffraction integrals [2]. The
first solution of the Rayleigh-Sommerfeld integral, also known as
the Huygens-Fresnel principle, is expressed as follows:

u(x,y) =
1
jλ

∫∫
u0(x,y)

e jkr

r
cos(θ)dxdy, (1)

where the field at a target image plane, u(x,y), is calculated by
integrating over every point of the hologram’s field, u0(x,y). Note
that, for the above equation, r represents the optical path between
a selected point over a hologram and a selected point in the image
plane, θ represents the angle between these two points, k represents
the wavenumber ( 2π

λ
) and λ represents the wavelength of light.

In this described light transport model, optical fields, u0(x,y) and
u(x,y), are represented with a complex value,

u0(x,y) = A(x,y)e jφ(x,y), (2)

where A represents the spatial distribution of amplitude and φ repre-
sents the spatial distribution of phase across a hologram plane. The
described holographic light transport model is often simplified into
a single convolution with a fixed spatially invariant complex kernel,
h(x,y) [5].

u(x,y) = u0(x,y)∗h(x,y) = F−1(F (u0(x,y))F (h(x,y))) (3)

There are multiple variants of this simplified approach [3, 7, 8]. In
our case, we choose to use the most common form of h described as

h(x,y) =
e jkz

jλ z
e

jk
2z (x

2+y2), (4)

where z represents the distance between a hologram plane and a
target image plane.
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Figure 1: Holographic image reconstruction. A collimated beam with
a homogenous amplitude distribution (A=1) illuminates a phase-only
hologram u0(x,y). Light from this hologram diffracts and arrive at an
image plane u(x,y) at a distance of z. Diffracted beams from each
hologram pixel interfere at the image plane and, finally, reconstruct a
target image (Refer to Equation 3 for details).

2 IMPLEMENTATION DETAILS

Here we discuss in detail some aspects of the implementation we
were unable to fully cover in the main manuscript.

2.1 Downsampling

Whilst our implementation of the metameric loss function mainly
follows the analysis procedure of Walton et al. [6], we found it was
important to change the downsampling method used to compute
the steerable pyramid. In [6] the steerable pyramid construction is
accelerated by replacing the original downsampling approach used
in [4] with a more efficient 2x2 averaging approach. This decision
appears to have been made in [6] as it allows the steerable pyramid
construction to use efficient mipmap generation methods on GPUs
for improved efficiency in real-time applications.

Unfortunately, we found that when using this approach, optimised
images would contain large blocky artefacts as shown in the upper
example in figure 2. As a result we reverted back to the original
downsampling approach of [4], which involves applying a lowpass
filter with a stride of 2 pixels. As seen in the upper half of figure 2,
this eliminated these blocky artefacts.

We hypothesise that this occurs because the simple 2×2 averag-
ing approach is not well-suited to backpropagation. For example,
suppose we used a pyramid of depth 5, and a single pixel in the
lowpass residual was incorrect. This pixel was originally generated
by averaging pixels over a 25×25 = 32×32 block of pixels in the
input, so when taking a step in the optimisation, the same update
will be applied to all pixels in this 32×32 block. Since these blocks
do not overlap, they will remain visible in the output, as can be seen
in the lower example in figure 2.



Figure 2: Images optimised to directly match a target image under our
metameric loss function. Below: using 2x2 averaging downsampling.
Above: using the original downsampling method of [4].

2.2 Foveation
This section will describe the way in which the pooling LoD map is
calculated. In the main paper, this is referred to as calc_lod_map()
in the pseudocode.

We define the pooling regions in a similar way to [1]. A main
goal of the pooling approach is to foveate in a consistent way for
different image sizes and viewing distances.

For each pixel, we compute a pooling size in radians, based on its
eccentricity. The pooling region itself covers all viewing directions
with angles less than the pooling size from the pixel. Pooling regions
are thus conical in 3D space.

We assume the image will be displayed to the user at a plane a
fixed distance away from them. As a result the pooling regions we
compute will be intersections of this plane with each pooling cone
as visualised in figure 3.

Figure 3: Visualisation of a conical pooling region in red intersecting
with a planar image.

We make the following simplifying assumptions:

1. The user has a single viewpoint (we do not consider eyes
separately).

2. The viewpoint is coaxial to the image plane (that is, the closest
point in the image plane to the viewpoint is at the centre of the
image).

3. The image plane is perpendicular to the viewing direction.

We assume that the real distance to the image and the real width
and height of the image are known.

In the following we determine the area of the pooling region
required for a single pixel p. We define a coordinate system with
the viewpoint at the origin, looking along the positive z-axis. We
consider the 3 3D points in the image plane shown in figure 4: g,
the gaze location, c, the image centre and p the current pixel being
considered.

g p

c

Figure 4: Gaze location g, image center c and current pixel p.

The eccentricity e of the pixel p is simply the angle between p
and g, which may be computed using a dot product in the usual way:

e = arccos
(

p ·g
|p||g|

)
(5)

The desired pooling region angle θ is then computed based on e.
Whilst in [1] the pooling size is set to be directly proportional to e,
in this we set:

θ := αe2 (6)

The parameter α is an adjustable parameter controlling the ag-
gressiveness of the foveation. We chose this quadratic relationship
as it produced better results with the analysis method of [6].

As stated above, the pooling region in 3D may be visualised
as a cone extending from the viewpoint. We are interested in the
intersection of this cone with the image plane. This intersection is a
conic section. In general conic sections can be ellipses, hyperbolae,
parabolae or points, but in our case all the intersections will be
ellipses.

c
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Figure 5: An elliptical pooling region (size exaggerated for readability).

In fact as shown in figure 5 they are each ellipses with major
axis aligned radially, along the line connecting p to the centre of the
image c, and minor axis perpendicular to this.



We now determine the lengths a and b of the major and minor
axis of this ellipse.

pθ

Figure 6: Determining the length of the minor axis of the ellipse.

To determine the length of the minor axis b we consider the
triangle connecting the viewpoint with the two ends of the minor
axis as shown in figure 6. From this it is clear that the length of the
minor axis is as follows:

b = 2|p| tan
(

θ

2

)
(7)

To determine the length of the major axis a we consider the
triangle connecting the viewpoint, the centre of the image c and the
pixel p shown in figure 7.
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Figure 7: Determining the length of the major axis of the ellipse.

Note that the length of the major axis a is w2−w1, so we first
determine w2 and w1. First we find the angle ε between p and c
using a dot product as before in equation 5. This allows us to find
the angles φ1 = ε − θ

2 and φ2 = ε + θ

2 . Now w1 and w2 can be
determined:

w1 = |c| tan(ε− θ

2
), w2 = |c| tan(ε +

θ

2
) (8)

Now the major and minor axis lengths a and b are known the
area of the pooling region is simply πab

4 . However, in this work we
accelerate pooling by trilinear sampling from mipmaps. As a result
our effective pooling regions are square. To achieve the same area,

our pooling region should thus have sides of length s =
√

πab
4 .

We convert this length into a value in pixels sp by dividing by
the real width of the image, and multiplying by its width in pixels.
Finally, we determine the LoD level l of the mipmap we should
sample from to approximate filtering with a box filter of size sp:

l = max(log2(sp + ε),0) (9)

Here the small added ε avoids taking log2(0) at the fovea. Pixels
near the fovea may have pooling sizes smaller than a pixel, which
would give negative output, so the max ensures no invalid LoD levels
below zero are produced.

In practice a map of LoD levels can be precomputed for a gaze
location and used for multiple applications of the loss function.

An advantage of computing the pooling region sizes in this way
is that for a single value of alpha, the degree of foveation should
appear the same for different viewing distances and image sizes, as
long as these are supplied when finding the LoD levels.

3 FURTHER RESULTS

Figure 8 shows further simulated hologram examples using our
method and MSE loss, both optimising for 200 iterations at a learn-
ing rate of 0.08.

Figure 9 shows some examples of holograms optimised using
MSE loss and our method displayed on our protoype holographic
display, optimised with the same learning rate and iteration count.
We note that both examples suffer from typical holographic noise,
but the metameric loss is able to achieve better sharpness in the fovea
in many cases. These examples use the temporal averaging approach
described in the paper. We found that without this approach, both
holograms were severely affected by noise and the improvement was
harder to see.
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Figure 8: Additional simulated holographic results optimising using MSE loss and our method. Columns on the right show close-ups of the foveal
region of the image for the intended gaze location.



Figure 9: A comparison between holograms generated using MSE loss and our method, shown on our prototype holographic display using
temporal averaging. Columns on the right show close-ups of the foveal region of the image for the intended gaze location.


	Holographic Image Propagation
	Implementation Details
	Downsampling
	Foveation

	Further Results

